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ABSTRACT: In what follows we examine the hypothesis that there has been 

no improvement in the offshore oil production safety vs the hypothesis

that there has been a gradual improvement.

Our analysis will show that the second hypothesis is much better supported 

by the available data.



INTRODUCTION

One assumption concerning oilspills due to activities on offshore platforms 

is that they follow a Poisson distribution with parameter proportional to 

the oil produced. Of particular interest are spills big enough to create 

environmental hazards by themselves, and attention has focused on spills 

of 1,000 barrels or more. In what follows the term spill, unless otherwise 

qualified, will refer to spills of 1,000 barrels or more that originate from 

oil production platforms on the U.S. Outer Continental Shelf.

A look at the U.S. offshore oil production from 1964 to December 1979 

and at the spill data shows that:

a. Production rose from 1964 to 1971 and has been declining 

ever since (Table I).

b. The estimated amount of oil produced between two successive spills 

shows a tendency to increase with time (Table II).

The question is then:

Is there any statistical evidence that we are not dealing with a Poisson 

process whose parameter is proportional to the oil produced?

or equivalently:

Is there any reason to believe that the estimated amounts of oil produced



between successive accidents (x^XoftX^*.) are not realizations of 

independent and identically distributed exponential variables X-j, X2 »    ,

To test the latter, we applied some distribution free tests to the observed 

variables and we applied a second set of tests by constructing variables 

whose distributions are free of X (the ratio of the Poisson parameter over 

the oil produced). The following results were obtained:

(A) Runs, runs-up, and runs-down. The signs of the differences of our 

observations are:

Let run-up be a maximal uninterrupted sequence of "+"s and run-down a 

maximal uninterrupted sequence of "-"s. Then, for nine observations we have

(1) The probability of three runs or fewer is 2.57%. 

(Bradley, 1968, Table X)

(2) The probability that the longest run will have a length of 4 or 

more is 7.18%. (Olmstead, 1964, Table 2)

(3) The expected number of runs-up of length 4 or more is 0.0361. 

(Bradley, 1968, p. 274)

(4) The probability that the longest run-up will have length 4 or more 

is therefore greater than 3.59% but less than 3.61%.



Indeed, any given sequence of signs may contain runs-up, runs-down or runs-up, 

and runs -down of a given length.

Thus:

Prob (longest run-up J> k) 2. P r°b (longest run 2. k)/2

(giving in our case)

Prob (longest run-up J> 4) ^ 7.18/2 * 3.59

On the other hand, the expected number of runs-up of length k or more 

exceeds the probability of having at least one run-up of length k or more 

since the' former equals:

(exactly a runs-up of length k or more) 

while the latter equals:

£P (exactly a runs of length k or more)
£

(B) Kendall's test for correlation:

Given n observations x-j^-.x^ Kendall (1955) defines T as the number

of pairs of numbers in the sequence in which the smaller observation precedes

the bigger one and I, as the number of pairs in the sequence in which the

bigger observation precedes the smaller one. Kendall's statistic is S » T - I

and is a measure of the tendency of our observations to form a monotonic

sequence.

In our case there are nine observations, no ties, I = 3, T = 33, and S = 30.



From Bradley (1968, Table XI) we find that: 

Prob (S >. 30 | n = 9) < 0.5%.

(C) Hotel ling and Pabst's test.

Given n observations XpX2«.xn , we define rank (x^) to be the

number of x-'s, j = 1,2..,i,...n, which do not exceed x-. The statistic j j

n
D - E [i - rank(x,)]z 

i = 1 1

is a measure of the tendency of our observations to form a monotonic 

sequence, with small D values indicating increasing sequence, and large 

D values indicating decreasing sequences. In our case we have:

x 31.3 55.9 103.1 712.9 43.5 270.5 272.5 804.9 2054.3 

rank(x) 13472568 9

and we compute:

D = 0 + (2-3) 2 + (3-4) 2 + (4-7) 2 + (5-2) 2 (6-5) 2 + (7-6) 2 +0+0 

=1+1+9+9+1+1= 22

From Bradley (1968, Table 1) we obtain:

Prob (D _< 22 | n = 9) < Prob (D _< 26 | n = 9) _< 1%

(D) Finally we constructed a number of random variables whose distribution 

is independent of the value of A, X being the constant in the relationship
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I 
Poisson Parameter = A* (oil produced)

Such a random variable is, for instance,

T * (sum of last m x^'s)/(sum of first m x^'s) 

Where 2 <: m £ n/2 (n being the number of our observations).

Then:

m - 1 i-ii
Prob (T >. r) = r (m + k - ') rk/(l + r) k+m

k = 0 k

For our data with n = 9 and m = 4 we compute t value of 3.77 

and Prob (T £ 3.77) - 3.9%

If we extrapolate a production level for 1980, if we use the fact 

that there have been no spills in 1980, and if we take the oil 

produced since the last accident as a lower estimate for x, 0 , then 

we compute that t > 3.85 with n - 10 and m = 5.

For these values:

Prob (T > 3.85) « 2.23%

There are of course other random variables like T that one can construct 

and test, such as:

j x,
Tj = (max      -      , j ^ n/2), and

X + X + ... + X



T2 = (max (xk+lj  .., xn )/max (x^ , x2 , ..., xk ), k =

These random variables also have distributions independent of X, and 

when used, they indicate low likelihood that the X^'s are independent 

and identically distributed exponential random variables.

Thus it seems that there are excellent reasons to reject the hypothesis 

that the random variables X-j, X£»     Xn are identically distributed 

and independent. In what follows we will investigate whether we can 

construct 'a better model by assuming that the risk factor X is not constant.



PART I

Let us assume that the exposure coefficient for the year 1964+i is "X . 

Then we will seek to maximize the likelihood function:

k \f 14
1 n* X-t- n Xzf't-; * *'

« 0 n 1 ! ' 1 1 i   0 ^!

Where n^ = number of spills in 1964+i,

tj~'- oil production in 1964+i, 

and n = Zn^

We remark that no matter what the value of p, in order to maximize 

the likelihood function we must choose:

But if A is so chosen, then the function to maximize becomes

The logarithmic derivative of the last expression is

"i fi 1 
z \ . n
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If we try to maximize the likelihood function assuming that:

fj= 1.0 or fj - I/Hip or f^ = 1-ip or f^ = p 1 ,

then we obtain the following values for A,p, and the likelihood 

function:
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where x is measured in spills per billions of barrels produced and represents 

the exposure coefficient in year 1964.

Following Edwards (1972), we will assume that the introduction of an 

extra parameter is justified if the natural logarithm of the likelihood 

function increases by two or more. In our case, for f^ « I/Hip we obtain 

in (47.4/2.72) = 3.32. Thus we get a significantly better fit by assuming 

that f1 » 1/1+ip.

This being said, there is another question to be answered: 

The functional form of f^ was in each instance chosen in such a way that: 

a. f.j is a "simple" function of i and p.



b. There is a set of values for p, S(f), such that:

> f(P) f°r a11 1 = 0,1,2... and p in S(f).

c. We had good reasons to believe that the value of p that 

maximizes the likelihood function would fall in S(f).

Is it possible that we can do significantly better by choosing some 

other function f that will satisfy conditions b and c?

To answer these questions we maximized the likelihood function by 

imposing no restriction other than that:

A s A-! ^ Ap )_ . . . S \£ s Xj .1 _^ ...

(equivalently fQ (p) _> f^p) _> f2 (p) > ... ^.(p) _> fui (p) >    )

Then, we found that the maximum value of the likelihood function 

is 2.96 10~6 . This is better than 4.74 10"7 but not significantly 

so if we follow Edwards' rule of thumb (Edwards, 1972). Indeed, 

£n(29.6/4.74) = 1.83 < 2.0. On the other hand we will have to:

a. Make heroic assumptions on the functional form of f in order 

to achieve or even approximate XQ , x-j, ..

b. Use the data to determine the functional form of f as well as 

the value of p, thus losing another degree of freedom.
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We can therefore assume that the choice of f^ » I/Hip is a 

reasonably good one.

In Table III we show the values of x^ " X/0+ip) which were 

found by maximizing the likelihood function (i.e., by setting 

X * 16.14 and p = 1.402). Notice that ^ is the expected number of 

spills per billion barrels produced in 1964+i.

We notice that if we readjust the oil produced in (1964+i) by the 

factor l/(l+ip), then we should have a Poisson process with A = A   

We can therefore apply the same battery of tests we used in Part I 

to this new hypothesis and we will do so in the next section.
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PART II

In this section we will examine whether the model proposed in Part I 

is free of the shortcomings that the original model exhibits. We will 

also examine whether the model's estimates of A's values display any 

stability when a number of years are removed from the record.

The adjusted amounts of oil produced between two successive accidents 

are:

31.3 55.9 59.1 151.5 5.4 33.1 29.0 70.6 and 120.5

These adjusted amounts were found by adjusting each year's production by 

a factor (1/1+ip for year 1964+i, i - 1, 2, ... 15) and then by 

interpolating.

If our model is correct, then these values are realizations of independent 

and identically distributed exponential random variables.

Thus we have:

(A) The observed run of signs is:

and

Prob (5 or less runs |m = 9) = 43.47%, (Bradley, 1968, Table X), while 

Prob (longest run >_ 3 | n = 9) * 38.15%, (Olmstead, 1964, Table 2).
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(B) Kendall's test. 

We have:

1 = 2 + 3 + 3 + 5 + 0 + 1+0 + 0 = 14 

7=6+4+3+0+4+2+2+1= 22 

S « T - I » 8

From Edward's (1972, Table I) we obtain:

Prob (S >_ 8 | n = 9) = 23.8 

While

Prob (|S|_<8|n = 9)=l-2* Prob (S >_ 10 | n = 9) = 

1 - 2 * 0.179 = 1 - 0.358 = 64.2%

(C) Hotelling and Pabst's test.

i - rank (x^]2 - (l-3) 2+ (2-5) 2 + (3-6) 2 + (4-9) 2 +

(5-1 ) 2 + (6-4) 2 + .(7-2) 2 + ( 8-7) 2 + (9-8) 2 * 94

From Bradley (1968, Table I) we obtain:

Prob (D £ 62 | n = 9) = Prob ( D >_ - (ri2 - 1 ) - 62 | n = 9) _< 10%

For: n = 9 \ n (n2 - 1) = \ 9 80 = 240
«3 0

Thus :

Prob (62 _< D _< 178) _> 80%, and 94 is in the 80% central range.
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(D) (Sum of last four/sum of first four) « 253.2/297.8 « 0.85

and

Prob (T _> 0.85 | m « 4) - 58.80%

We see then, that the tests which indicated that there was something 

wrong with our first model do indicate that there is better support 

for the hypothesis of a decreasing X (increased safety).

Finally, in order to see how stable are our estimates of X, we put on 

the same graph (Graph I) the following information:

(1) The estimated risk factor (expected number of spills per billion 

barrels produced) for years 1966 to 1979 when the risk factor A^ 

is computed as A/l+ip with x= 16.4 and p * 1.4. These points are 

represented by*.

(2) The risk factor for year 1964+i that we would have estimated, if, 

we had followed the same procedure as in I, when data only for years 1964 

through 1964+i were available. These points are represented by a A .

(3) The risk factor we would have estimated if we assumed no improvement 

and data for years 1964 to 1964+i only, i >_, were available.

These points are represented by   .

The graph shows that there is little difference between the "   " points and the 

A points from 197T onwards.
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PART III

Let us assume that the process which we have been observing is a Poisson 

process for which the exposure variable in year 1964+i was:

Xt 1 = xVU+ip), i - 0,1, ..... 15

From the likelihood function for the observed record we obtained the estimates 

X s 16.14 and p * 1.4. It is, of course, evident that a different realization 

of the same process would lead us to a different estimator of (x^p*). We
A A

are therefore interested not only in the estimator (X,p), but also in
A A

knowing how good an estimator (x,p) is. More important, since we plan to use
* 

x and p to estimate X U 15 , the exposure coefficient for 1979 and beyond, we
A A .

would like to have an idea of how x,r = x/l+15p is distributed around A 15- 

Since it is quite unlikely that we can find an analytic expression for the
A

distribution of Ajg, we proceeded as follows:

A A

A. When we find X and p by maximizing L(x,p), L being the likelihood
A A

function, we can also find a region D around (x,p) such that: 

D = [(x,p) L(x,p) 2: e-2 L(x,p)]

A A

and call it the 2-unit support region for (x,p). Thus we can obtain a measure
0.0. A A

of how good an estimate of (ASp1 ) we obtain by (A,p) (Edwards, 1972).
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Since our likelihood function is of the form:

L (X,p) = A(p) Xne- XB (P), A(p), B(p) 2 0,

then for a fixed p, L is an increasing function of "X while o jC X <, n/B(p),

and a decreasing function thereafter. Thus L, viewed as a function of X,

A(£) n i 
B"(P)

attains its maximum at X * n/B(p), and the said maximum is -i22nne~n . Thus

in order to find D, we first solved the equation:

nne-" = L (-!-, p) = e'* L (X,p) 
B"(p) B( P )

which has two solutions, pj = 0.08 and p2 = 7.23. For p outside [pj,
*> A A

the inequality L(X,p) 2 e~2 L(X,p) has no solutions in X. On the other hand 

if p is in [p1$ p2], there are values xmin(p) and xmax(p) such that:

[L (x,p) 2 e-2 L (X,p)] -^"[Xmin(p) jC X _< xmax(p)]

Between these values lies Xopt(p) = n/B(p), the value that maximizes 

L(X,p), viewed as a function of x. In Table IV we give the values of 

Xmin(p), xopt(p) and Xmax(p) for different values of p. We also give 

*X(p) = Xmin(p)/l+15p, X(p) - Xopt(p)/l+15p, and x*(p) - Xmax(p)/l+15p, 

which are the exposure rates for 1979 that correspond to the x values 

in columns 2-4.

The values of Xmin, xopt and xmax are depicted in Graph II. The values 

of *X,X and X* are depicted in Graph III.
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Finally let us remark that, as the graphs imply, Xopt is an increasing function 

of p, while X is a decreasing one.

^opt(p) =    __, while 
Indeed: 15 t .-

T
i-o

X(p) = Xopt(p)
L+15p rt /15 15 - 1 x Lt i ( 1 * i(Mp) }

Evidently the denominator of Xopt is a decreasing function of p, while the 

denominator of X is an increasing function of p.

B. For a given pair (X,p) we can simulate a number of observed records, 

consistent with the actual volume of oil produced. For each such record r
A A

we can derive the maximum likelihood estimates x(r) and p(r). Then we can
A A A A A A A

compare xic(r) = X(r)/l+15p(r) to X15 = X/l+15p, where X and p are the 

maximum likelihood estimates for the actually observed record. More 

specifically: Let X15 = X/l+l5p be the "true" exposure rate in 1981, and
A A A

let Xj 5 * x/l+15p be the rate we estimated via the observed record. Then
A A A A

we call tail of X15 the interval (-«>, X15 ) if ^5 < ^5 and (^59 +00) if
A

X15 **15* 'r°r a set °^ si"111 ^ 3^60' records we will count then the number of
A A A A

instances in which x^ 5 (r) = x(r)/l+15p(r) is in the tail of Xj 5 as well
A A

as the number of instances in which ^(r) is in the tail of X^g and
A A

(x,p) is not within the 2-unit support of (x(r), p(r)). The results of 

these simulations are given in Table V. Each entry of the table is of
A A

the form a/b where a is the instances in x^fr) was in the tail of Xj 5 ,
A A

and b the cases in which ^(r) was in the tail of Xj 5 and (x,p) was not
A A

in the 2-unit support of (Mr),p(r)).
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CONCLUSION

On the basis of the available evidence, it seems reasonable to assume: 

a. That there has been an improvement in the safety record.

b. That the risk factor in 1979 was 0.73 spills per billion 

barrels produced and not 2.05 as we would have computed it, 

if we were to assume a Poisson process and constant A.

It is conceivable that new data could make us adopt a different model. 

One possibility is that there has been an abrupt change and that a good 

model could be one that would postulate no gradual change in X but would 

instead discard years 1964 and 1965 from our data base. We want to stress 

here that there is not, presently, sufficient statistical support that would 

make this model preferable to the one we propose. Furthermore, it can be 

readily seen that this model's estimate for year 1979 (1.46) would be 

substantially lower than 2.05 although not as* low as 0.73.

Finally we should observe that however we might modify our conclusions, 

as new data is collected, it is quite unlikely that the model with 

constant x- implying no increase in safety - will be shown to be correct.
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TABLE I 

U.S. Offshore Oil Production, 1964-80

YEARS .PRODUCTION (in millions of barrels)

1964 114.977

1965 136.236

1966 175.187

1967 205.861

1968 . 252.016

. 19£9~ 295.429

1970 337.123

1971 390.180

1972 378.497

1973 360.899

1974 322.354

1975 303.159

1976 294.183

1977 . 276.984

1978 270.421

1979 262.275

1980 256.000*

* Extrapolated from the production in previous years. 

Source: U.S. Geological Survey, 1980.
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TABLE II

Accidents in which more than 1,000 barrels were spilled, and the estimated 

amount of oil produced between the previous accident and the present one. 

(For the the first accident, the amount given is the estimated production 

between January 1, 1964 and the day of the accident.)

SPILL DATE OIL PRODUCED
(month/day/year) (millions of barrels)

1 4/8/64 31.3

2 10/3/64 55.9

3 7/9/65 103.1

4 1/23/69 _ 712.9

5 3/16/69 43.5

6 2/10/70 270.5

7 12/1/70 272.5

8 1/9/73   804.9

9 11/23/79 2054.3

Source for spills and dates: U.S. Geological Survey, 1980
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TABLE III

The computed values of exposure coefficient for the year 1964+i, 

x i « A/Hip when X = 16.14 and p = 1.402 are:

YEAR VALUE OF X (spills/million barrels)

1964 16.14

1965 6.72

1966 4.24

1967 3.10

1968 2.49

1969 2.05

1970 1.72

1971 1.49

1972 1.32

1973 1.19

197<f 1.07

1975 0.98

1976 0.91

1977 0.84

1978 0.78

1979 0.73
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TABLE IV

Ranges of x for different values of p

Calculations of X Exposure rates for 1979

0.08
0,09
0,10
0,20
0,25
0*50
0*75
1*00
1*25
1*50
1,75
2,00
2*25
2*50
2*75
3*00
3*25
3.50
3*75
4*00
4*25
4*50
4*75
5*00
5*25
5*50
5,75
6,00
6*25
6*50
6*75
7*00
7*10
7*20
7*21
7*22
7*23

Xmin

3.29
2*94
2*88
3*06
3*25
4*24
5*21
6*15
7*07
7*98
8,88

*9.78
10*69
11*60
12*52
13*45
14,39
15,36
16,35
17,37
18,41
19,49
20*62
21*79
23*03
24*33
25*72
27*23
28*88
30,74
32,93
35,77
37,33
39,71
40,11
40,61
41,54

Xopt

3.29 
" 3,41 
3,55 
4,83 
5,43 
8*18 

10*63 
12*87 
14*95 
16*88 
18*70 
20*40 
22*00 
23*51 
24*94 
26*30 
27*59 
28*81 
29*98 
31*09 
32*15 
33*17 
34*14 
35*07 
35*96 
36*81 
37*63 
38*42 
39*18 
39*91 
40*61 
41*29 
41*55 
41*81 
41*84 
41*86 
41*89

Xmax

  3.29 
3*92 
4*31 
7*18 
8*43 

14*02 
18*92 
23*29 
27*23 
30,77 
33,95 
36,81 
39,38 
41,67 
43,71 
45.51 
47,10 
48,47 
49,65 
50,64 
51,45 
52,09 
52,57 
52,87 
53,00 
52,97 
52,75 
52,33 
51,68 
50,74 
49.40 
47.34 
46.08 
43.98 
43,62 
43,14 
42,23

*x
7~50

Y,25
1,15
0,77
0*68
0*50
0,43
0*38
0*36
0*34
0*33
0*32
0*31
0*30
0*30
0*29
0*29
0*29
0*29
0*28
0*28
0*28
0,29
0,29
0,29
0,29
0,29
0,30
0,30
0*31
0*32
0*34
0*35
0*36
0.37
0.37
0.38

*15

1.50
1.45
1*42
1*21
1*14
0.96
0*87
0*80
0.76
0*72
0,69
0,66
0,63
0,61
0,59
0,57
0,55
0,54
0,52
0,51
0,50
0,48
0,47
0,46
0,45
0,44
0,43
0,42
0,41
0,41
0,40
0,39
0,39
0,38
0,38
0,38
0,38

X*

1.50
1,67
1,72
1,79
1.77
1,65
1,54
1,46
1,38
1,31
1.25
1.19
1,13
1,08
1*03
0*99
0*95
0*91
0*87
0,83
0,79
0,76
0,73
0,70
0,66
0,63
0,60
0,58
0,55
0,52
0,48
0,45
0,43
0,40
0,40
0,39
0,39



22

TABLE V 

Simulation of observed records for different combinations of p and X

0.08 3.29 1.50 

0.10 2.88 1.15 

0.10 3.55 1.42 

0.10 4.31 1.72 

0.20 3.06 0.76 

0.20 4.83 1.21 

0.20 7.18 1.79 

0.50 4.24 0.50 

0.50 8.18 0.96 

0.50 14.02 1.65 

1.50 7.98 0.34 

1.50 16.88 0.72 

1.50 30.77 1.31 

7.23 41.88 0.38 

0.00 2.05 2.05 

0.00 2.00 2.00

100 200 300 400

5/1

18/0

9/1

4/0

41/1

7/0

2/0

27/2

27/1

2/1

14/3

49/0

9/0

11/4

4/0

6/0

7/2

45/0

16/1

8/2

77/3

18/0

6/1

54/4

49/2

2/1

23/3

107/2

17/0

20/5

10/3

14/1

13/2

63/2

30/3

10/2

130/7

43/2

7/2

87/7

75/3

2/1

44/5

152/3

24/1

23/5

19/3

23/2

.38/4

87/3

44/6

16/3

167/9

61/2

10/1

127/10

93/3

3/1

51/6

205/5

27/1

28/5

24/3

31/3

A "

Each entry k/m shows that in k instances Xic(r) was in the tail of X^c and that
A A

in m out of these k instances (x,p) was not in the 2-unit support of (X(r), p(r)).

NOTE that the maximum likelihood estimates are: A = 16.14, p * 1.40, and 0.73
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GRAPH I 

[Symbol explanation on page 13.]
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